Regularized gap function as penalty term for constrained minimization problems
نویسندگان
چکیده
منابع مشابه
Sign-Constrained Regularized Loss Minimization
In practical analysis, domain knowledge about analysis target has often been accumulated, although, typically, such knowledge has been discarded in the statistical analysis stage, and the statistical tool has been applied as a black box. In this paper, we introduce sign constraints that are a handy and simple representation for non-experts in generic learning problems. We have developed two new...
متن کاملOn Penalty and Gap Function Methods for Bilevel Equilibrium Problems
We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case...
متن کاملSmoothed Lower Order Penalty Function for Constrained Optimization Problems
The paper introduces a smoothing method to the lower order penalty function for constrained optimization problems. It is shown that, under some mild conditions, an optimal solution of the smoothed penalty problem is an approximate optimal solution of the original problem. Based on the smoothed penalty function, an algorithm is presented and its convergence is proved under some mild assumptions....
متن کاملDistributed Majorization-Minimization for Laplacian Regularized Problems
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified models, and multi-period portfolio optimization. We develop a distributed majorizationminimization method for this general problem, and derive a comple...
متن کاملA Penalty Method for Rank Minimization Problems in Symmetric Matrices∗
The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.12.048